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ABSTRACT: Increased temporal variance in life-history traits is gen-
erally predicted to decrease individual fitness and population growth.
We show that a widely used result of stochastic sensitivity analysis
that bolsters this generality is flawed because it ignores the effects of
correlations between vital rates. Considering the effects of these cor-
relations (although ignoring autocorrelations), we show that the ap-
parently simple relationship between vital rate variance and fitness
can be considerably more complex than previously thought. In par-
ticular, the previously estimated negative sensitivities of fitness or
population growth to variance in a vital rate can be either enhanced
by positive correlations between rates or reversed by negative cor-
relations, even to the point that variability in a rate can increase
fitness or population growth. We apply this new sensitivity calculation
to data from the desert tortoise and discuss its interpretation in light
of the factors generating vital rate correlations.
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The constellation of effects that variable environments
have on individual fitness and population growth is a ma-
jor focus of both life-history analysis and demography
(Cole 1954; Cohen 1966, 1968; Lewontin and Cohen 1969;
Schaffer 1974; Tuljapurkar and Orzack 1980; Ellner 19854,
1985b, 1987; Lande and Orzack 1988; Orzack 1993). For
instance, many general theories of life-history evolution
rely on some consideration of the effects of temporal var-
iability (Gillespie 1977; Seger and Brockman 1987; Stearns
1992; Hairston and Bohonak 1998). Similarly, it is in-
creasingly recognized that the failure to consider environ-
mental stochasticity in demographic analyses can result in
less precise and frequently biased results (Tuljapurkar
1990; Caswell 2001; Fieberg and Ellner 2001; Doak et al.,
forthcoming).

A long tradition of theoretical work has predicted that
temporal variation in the components of individual per-
formance is important in shaping population dynamics
and life-history patterns. However, careful empirical anal-
ysis of the effects of stochasticity has been far less common,
in part because of difficulties in using the types of data
most commonly and readily collected to test these pre-
dictions. The exception to this mismatch is the use of
demographic data and models to link empirical estimates
of variance and correlation among life-history traits with
the effects of stochasticity on population performance and
fitness (Boyce and Perrins 1987; Kalisz and McPeek 1993;
Liou et al. 1993; Philippi 19934, 1993b; Pfister 1998; Menu
et al. 2000; Menu and Desouhant 2002). A key generality
to emerge from stochastic demography is that temporal
variation in growth, survival, and other vital rates will
negatively influence population growth and fitness. In par-
ticular, variation in the vital rates to which population
growth is most sensitive will disproportionately decrease
stochastic growth, and thus there should be strong selec-
tion against variation in these rates. The pleasantly intu-
itive nature of this result and the ability to test it with
empirical data (e.g., Pfister 1998) have made this one of
the most influential and widely understood results of sto-
chastic demography.

Our goal here is threefold. First, we show that past



calculations of the sensitivities of population growth to
the variability of vital rate values do not properly account
for correlations among vital rates, and we derive the cor-
rect expression for these sensitivities. Second, we explain
the biological importance of using this corrected formula.
Briefly, when most correlations between vital rates are pos-
itive, the negative effects of variation in a rate can be
substantially higher than previously estimated. Conversely,
negative correlations can result in selection for higher var-
iability in some rates, contrary to the results of past anal-
yses. To our knowledge, this prediction, which runs
counter to the predictions of the bet-hedging theory and
other stochastic analyses, has not been explicitly made be-
fore. Finally, we provide an example to show that corrected
estimates of sensitivity can differ substantially from those
previously estimated. In particular, we show that positive
sensitivities for variability in some vital rates can arise from
real demographic patterns. For these discussions to make
sense, we must first briefly review the generalities that have
emerged from demographic matrix models about the con-
sequences of stochastic variation in life-history traits.

Background

The starting point for analytical explorations of stochastic
demography is Tuljapurkar’s (1990) approximation for the
stochastic log growth rate, log A,. While Tuljapurkar’s full
approximation includes the effects of between-year cor-
relations in matrix elements, we use the simpler version
of his formula that omits this complication:

- 1[72
log\, = log\, — 5(%),
1

where 77 = 2 z E 2 Cov (e ), em)n)ikyliw. 1)
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Here, )_\1 is the dominant eigenvalue of the mean matrix
A, obtained by averaging each of the elements across all
estimated annual projection matrices and weighting each
by the frequency at which it is expected to occur. The
approximate variance of the annual population growth rate
caused by variation in the matrix elements, 7°, is a sum-
mation across all pairs of matrix elements (e, , and e, ,)
of the covariances between the elements, Cov (¢, ), €,, )
multiplied by the sensitivities of A, to each of those ele-
ments, Sek’léem (where the indexes k, I, m, and n refer to
rows and columns of the population matrix). A sensitivity
value such as Sek‘l is the partial derivative of A, with respect
to matrix element e,, evaluated at its mean value:
oN/deg |, =z » Remember that Cov (e, e, ) is the vari-
ance of e, so that 7 includes both the variances and
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covariances of the matrix elements. Analyses based on Tul-
japurkar’s approximation rest on the assumption that var-
iation in matrix elements is relatively small, yet in general
this small-noise approximation has proven quite robust
(Fieberg and Ellner 2001; Doak et al., forthcoming).

One can arrive at the general result that variability in
annual population growth reduces fitness by examining
equation (1): log A\, is approximately equal to the log de-
terministic growth rate, decreased by the variability term
—7%/2N\.. However, the more interesting question is how
variation in a particular matrix element influences fitness.
The terms in 7° with k, ] = m, n are simply Var (e, ,) Sﬁu )
that the negative effect on logA, of variance in e, is
weighted by the square of its deterministic sensitivity value.
Thus, selection against variation in matrix elements will
be highest for those elements with the highest sensitivity
values.

This prediction is illustrated more completely by taking
the derivative of equation (1) with respect to a particular
covariance or variance term and approximating the sen-
sitivity of log A, to changes in that variance or covariance
(Caswell 2001). As with deterministic sensitivities, these
stochastic sensitivities are widely interpreted as measures
of the force of selection acting on elements of the life
history (Caswell 2001). The vast majority of the terms in
7> do not include any particular covariance term, so the
resulting stochastic sensitivity values are quite simple:

dlogA, 1= v
_otogAn, L , 5
dVar (e, ) 2)\?( ek,l) (2a)

dlogA 1 - -
T s TS 2
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Note that in these approximations, the sensitivity of sto-
chastic growth to a variance or covariance term is a func-
tion only of the deterministic growth rate of the mean
matrix and the deterministic sensitivity values of the mean
matrix elements for the variance or covariance being
considered.

Because sensitivities to matrix elements are always pos-
itive, the estimated sensitivities of log\; to variances and
covariances are always negative (eqq. [2]). Equation (2a)
is the basis for the generality that those matrix elements
(and more important, the life-history traits they represent)
that have higher sensitivity values should be under the
strongest selection for low variance. In support of this
prediction, Pfister (1998) found a negative correlation be-
tween the variances of matrix elements and their sensitiv-
ities across a range of species (the same pattern held for
coefficients of variation and elasticities, which are rescaled
sensitivity values; but see Morris and Doak 2004). Equa-
tion (2b) also implies that selection should favor more
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negative covariances between stochastically varying matrix
elements (Orzack and Tuljapurkar 1989).

A Complication in Analyzing Variance-
Importance Trade-Offs

As we noted above, the standard stochastic sensitivity re-
sults rely on the assumption that only the terms of 7* that
contain a particular variance and covariance term will in-
fluence the sensitivity value for that term. Implicitly, this
is an assumption that the variance and covariance terms
contained in 7° are independent of one another. In fact,
this is wrong. One way to see this is to express the covariance
of two rates in terms of their correlation and standard de-
viations: Cov (e, €,,,,) = Corr (e, ), €,,,)0,, 0., . A change
in the covariance of these two rates can result from either
a change in their correlation, a change in the standard
deviation of ¢, , or a change in the standard deviation of

e,. . Conversely, a change in a standard deviation or var-
iance of a matrix element must create changes in the co-
variances of that rate with all other rates, unless the cor-
relations between these rates are also to change. This
means that the simple sensitivity and elasticity expressions
usually shown for variances and covariances in equations
(2) (e.g., eqq. [14.110] and [14.111] in Caswell 2001 and
eq. [9.15] in Morris and Doak 2002) are incorrect.

To derive better estimates of these sensitivities and elas-
ticities, it helps to recast the problem in terms of corre-
lations and standard deviations, thereby separating vari-
ance from correlation at the onset. While we are at it, it
also makes for more biologically informative results to
express Tuljapurkar’s expression for 7° in terms of the vital
rates (e.g., survival, growth, and fecundity values) that
underlie the matrix elements rather than the matrix ele-
ments themselves:

m,n

= 2 2 [ §1 §,,J (3)
i

where the summations across i and j now refer to vital
rates v; and v, S,;I is the sensitivity of N, to changes in the
mean of vital rate i, 0, is the standard deviation of vital
rate i, and p, , is the correlation between rates v; and v,.
With this reexpression, we see that the contribution of the
variability of v, to 7 is 025}, + 0, S, Siei pl,bl,]av}vij. In other
words, the influence of variability in v, is determined not
only by its own sensitivity but also by the sensitivity and
variability of all other vital rates to which it is correlated.

To see how these correlations can mediate selection on
variability in vital rates, it helps to consider the sensitivities
of log\, to standard deviations and correlations in vital
rates:

d(log\,)

i > R E AP — 4
do,, 1 Z P )

d(logA,) Y S (4b)

90, N

The key difference between the expression for d (log\,)/
do, in equation (4a) and that for dlog\ /0 Var (e, ) in
equation (2a) is that the summation on the right-hand
side of equation (4a) includes the standard deviations of
all vital rates that are correlated with v,. Rewriting equation
(4a) to separate these standard deviations from that of the
target vital rate, v, yields

80, + 2,5,5,0,0m. 5)

Jj#Ei

do,

vi

d(log )A\S) —1 (

A simple transformation can also be used to yield the
elasticities of A, (not logA, as above) to variance and cor-
relation E, and E, :

(6a)
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The expression in the parentheses of equation (5) shows
that it is possible for strong correlations with other vital
rates to substantially influence the overall sensitivity of A,
to variation in a vital rate. Consider the situation in which
all 5‘,,/_’, values are positive. When considered alone, variance
in each vital rate will negatively influence stochastic
growth. In this case, negative correlations between v; and

other rates will lead to a positive elasticity for variance if
= 24:5,Pu,00,, > S, 0,. In words, if v, is sufficiently neg-
atively correlated w1th vital rates that have sufficiently high
variances and sensitivities, then selection can favor higher
variance in that rate, even if variance in v, would appear
maladaptive if considered alone.

It is important to remember that unlike the sensitivities
of matrix elements, deterministic sensitivities of vital rate
means are not necessarily positive. Vital rates such as the
probability of shrinking into a smaller size class (for plants
and some invertebrates) or transitioning to postbreeding
stages (observed in many animals) will usually have neg-
ative sensitivity and elasticity values. The same is true of
the probabilities of death that arise from particular causes,
which, especially in management contexts, are often in-
cluded in matrices as mortality rather than survival
probabilities. For rates such as these, strong positive cor-
relations with vital rates having positive deterministic sen-



sitivities may reverse the sign of otherwise positive variance
elasticity and sensitivity values, leading to selection for low
variance. To illustrate the possible effects of correlations
on variance sensitivity values, consider the effect of just
one correlated vital rate j on the sensitivity to variance in
rate i. This effect is determined by a single term in the
summation in equation (5), S,/,IS,,jo,/_ijj, the sign of which
will vary with the combined signs of both deterministic
sensitivity values and the correlation between the two rates
(table 1).

A clear understanding of the forces generating these
results is important to avoid their misinterpretation. In
particular, the possible benefit of increased variance in a
life-history trait shown by these sensitivity results is not
due to a life-history trade-off, in any usual sense of the
term. A trade-off would imply that increased variability
in one vital rate would lead to an increased mean or de-
creased variability in another rate, thereby benefiting fit-
ness. Such allocation trade-offs are likely in many contexts
and, with enough data to estimate their parameters, can
be incorporated into matrix models fairly easily (e.g., van
Tienderen 1995). This type of trade-off can be one source
of the negative correlations between vital rates that we
might observe and use as parameters in a stochastic de-
mography model. However, the trade-offs themselves are
not included in the analysis we explore here, which as-
sumes that changes in one vital rate variance can occur
independently of any other variance or mean. Rather, the
effects of correlations that we show result from the ability
of variation in negatively correlated rates to counteract
each other’s effects. This reduces 7°, the overall variability
in annual growth or performance, from year to year. If
increased variance in one vital rate will offset the variation
in 77 caused by others, this variation will be favored. While
Tuljapurkar’s approximation and hence our analyses do
not fully account for the complexities of real structured
population growth (Tuljapurkar 1990; Caswell 2001), sim-
ulations we have conducted confirm that variability in vital
rates can indeed result in higher population growth rates.

Does This Correction Make a Difference?

To show how the corrected formula for variance sensitiv-
ities (eq. [5]) can alter the conclusions of a stochastic
sensitivity analysis, we used information for the desert
tortoise, a widely used example of a stochastic matrix
model (Doak et al. 1994; Caswell 2001; Morris and Doak
2002). In particular, we contrasted the results of equation
(5) with predictions that ignore all correlated vital rate
effects (i.e., setting the summation on the right-hand side
of eq. [5] to 0; this is the equivalent of eq. [2a] for co-
variances between mean matrix elements). The corrected
sensitivity values differ sharply from the uncorrected ones,
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Table 1: Effect of correlations between vital rates on the sen-
sitivity of stochastic growth rate to vital rate variation

Deterministic sensitivities of
a pair of vital rates

Correlation between Both One positive, Both
the two vital rates positive  one negative  negative
Positive - + -
Negative + - +

Note: The sign of the correlation between two rates (p,,,) combines
with the signs of their deterministic sensitivity values (S, and S,) to
determine whether stochasticity sensitivity will be increased (plus sign)
or decreased (minus sign).

increasing by up to 97-fold in magnitude and, in four out
of 11 cases, changing from negative to positive (fig. 1A).
For most variances, the contribution to the entire corrected
sensitivity value from indirect effects of correlated rates
was nearly as high or even higher than that of the direct
effects (fig. 1B).

Examination of particular vital rates makes it clear why
some sensitivities change so dramatically. When including
correlation effects, the sensitivity of growth to the standard
deviation in survival of class 4 tortoises, d,,, becomes far
more negative. This is because the survivorship of class 4
tortoises, s,, is positively correlated with all of the other
survival rates except that of the largest tortoises, to which
A, is least sensitive (fig. 2A). While growth rates show a
mix of positive and negative correlations, they have much
lower sensitivity values than do the survival rates to which
s, is consistently positively correlated. Thus, the negative
effect on A, of increasing o,, would be greater than oth-
erwise predicted because s, varies in concert with these
other survival rates. In contrast, the sensitivity to varia-
bility in size class 2 tortoises, 0, goes from near 0 to
positive when considering indirect effects. This is because
g, is negatively correlated with all of the survival rates
except that of the largest size class (fig. 2B). In other words,
a,, helps to balance the variance in these other vital rates,
thereby reducing their effects on A,. Other vital rates, such
as g, have low or mixed correlations with the influential
survival rates. Their variance sensitivities are therefore little
changed by including correlated effects (fig. 2C). Overall,
the use of our new formulation substantially changes the
picture that emerges from a stochastic sensitivity analysis
of variance terms and shows that predictions of selection
for higher variability can emerge from real life-history
patterns.

Conclusions

Matrix models have become one of the most commonly
used quantitative tools in ecology, with applications rang-
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ing from the management of populations to the search for
life-history patterns. A major use of matrix models is sen-
sitivity analysis, which provides a way to predict the fitness
consequences of changes in different vital rates and the
efficacy of management actions. We show here that a broad
generality of stochastic matrix models—that increased var-
iance in vital rates is never favored—is a substantial over-
simplification. In particular, negative correlations in the
variance of different vital rates can drastically change the
sensitivity of stochastic population growth to vital rate
variation, even leading to higher population growth rates
with increased variability of some vital rates.

In a similar but distinct vein, Tuljapurkar (1990, pp.
82-83) provides an example of synergistic effects of ma-
trices on population growth. Also, Tuljapurkar et al. (2003)
found cases in which increasing the variability of matrix
elements predicted increased population growth rate.
However, in neither case have previous researchers noted
the general ability of sensitivity analysis to predict selection
for variation and the importance of correlation structures
in generating these results. We caution that the corrected
sensitivities and elasticities we present in equations (4)—
(6) inherit from Tuljapurkar’s approximation (eq. [1]) the
assumptions that the environment is uncorrelated from
year to year and that environmental variability is not ex-
cessive. When either assumption is seriously violated, sen-
sitivities of the population growth rate to vital rate vari-
ability could also be computed by perturbation methods
described by Tuljapurkar (1990) and Tuljapurkar et al.
(2003).

Opverall, our results demonstrate that vital rate variation
can have stronger and more varied effects on fitness and
population growth than have been previously shown,
opening the door to more informative analyses and ap-
plications of demographic models. We do not expect that
our revised sensitivity expressions will always result in sub-
stantial changes in estimated sensitivities. However, when
individuals of different stages live in close proximity, many
vital rates are expected to have substantial correlations
from the effects of shared environmental drivers. These
correlations, which can be positive or negative, will have
significant effects in sensitivity analyses. This is especially
true for the estimation of the sensitivity of population
growth or fitness to variation in traits.

Because of the importance of correlations in determin-
ing sensitivity values, our results emphasize the need for
empirical studies to estimate correlation patterns as ac-
curately as possible and to consider these estimates when
making demographic predictions. In many cases, corre-
lations are not considered in demographic analyses be-
cause they can be only poorly estimated (Fieberg and
Ellner 2001). Furthermore, almost all estimates of corre-
lations are biased toward 0, so we routinely underestimate

the strength of their effects (Doak et al., forthcoming).
While many of the problems of accurately estimating var-
iation and correlation in vital rates cannot be easily solved,
our results show the importance of these parameters for
an accurate understanding of demographic and evolu-
tionary predictions and therefore the need to judiciously
use this information in future analyses.
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