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Abstract

Predicting connectivity, or how landscapes alter movement, is essential for understanding the
scope for species persistence with environmental change. Although it is well known that move-
ment is risky, connectivity modelling often conflates behavioural responses to the matrix through
which animals disperse with mortality risk. We derive new connectivity models using random walk
theory, based on the concept of spatial absorbing Markov chains. These models decompose the
role of matrix on movement behaviour and mortality risk, can incorporate species distribution to
predict the amount of flow, and provide both short- and long-term analytical solutions for multi-
ple connectivity metrics. We validate the framework using data on movement of an insect herbi-
vore in 15 experimental landscapes. Our results demonstrate that disentangling the roles of
movement behaviour and mortality risk is fundamental to accurately interpreting landscape con-
nectivity, and that spatial absorbing Markov chains provide a generalisable and powerful frame-
work with which to do so.
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INTRODUCTION

Dispersal underpins several theoretical frameworks in ecology
and evolution (Slatkin 1993; Hanski 1999) and lies at the
heart of the emerging sub-discipline of movement ecology
(Nathan et al. 2008). Understanding dispersal is central to
conservation and management plans (Harrison & Bruna
1999), which often emphasise connecting habitat remnants to
facilitate the movement of species through landscapes increas-
ingly altered by human activities (Heller & Zavaleta 2009;
Albert et al. 2017).
Dispersal is inherently risky. Organisms that attempt to dis-

perse through the matrix surrounding fragments risk mortality
due to predation, human-induced causes, resource depriva-
tion, or environmental conditions exceeding their physiologi-
cal limits (Bonte et al. 2012). Some matrix environments are
more challenging than others for movement – what has been
termed ‘matrix resistance’ (Ricketts 2001) – leading to slower
travel or changes in movement paths. Understanding matrix
resistance can be critical for predicting and mapping land-
scape connectivity (Beier et al. 2011), or the degree to which
the landscape alters movements among resources (Taylor
et al. 1993).
Currently, most frameworks for mapping connectivity rely

on a spatially explicit perspective of matrix resistance. These
approaches have seen widespread use in conservation biology
and landscape genetics as a means to identify corridors,

evaluate restoration potential, and understand limits to gene
flow (Spear et al. 2010; Dickson et al. 2019). Key areas of
potential connectivity are typically mapped and evaluated
through the use of least-cost approaches and/or circuit theory
(McRae et al. 2008; Pinto & Keitt 2009; Etherington 2016).
Least-cost approaches identify potential routes of connectivity
based on minimum resistance to movement between loca-
tions, whereas circuit theory can account for path redundan-
cies and non-optimal movement. While these applications
have proven very useful (Dickson et al. 2019), they typically
do not explicitly consider mortality risk when assessing ‘resis-
tance’. As a result, the interpretation of matrix resistance
often conflates effects of variation in movement behaviour
with that of mortality (Zeller et al. 2012). Because the demo-
graphic effects of mortality when moving through the matrix
could ultimately be greater than those resulting from changes
in movement routes, failing to distinguish between these two
issues could lead to implementing incorrect or even counter-
productive conservation actions (Fig. 1; Vasudev et al. 2015).
Although some experiments have made strides in understand-
ing these different effects (e.g. Nowakowski et al. 2015), a
unified framework for modelling connectivity that honors the
problem of both movement behaviour and mortality risk has
proven elusive.
Here, we derive a new framework to predict movement

and connectivity across landscapes that incorporates the con-
cept of matrix resistance while decomposing the role of the
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matrix on movement behaviour and mortality. This frame-
work extends random walk theory with absorbing Markov
chains, which explicitly acknowledge the potential for ‘ab-
sorption’, such as mortality (Ross 2010). Our spatial absorb-
ing Markov chain (SAMC) framework allows for
probabilistic accounting of both movement behaviour and
mortality risk of dispersers across landscapes. Furthermore,
it improves on commonly used least-cost analysis and circuit
theory in several other ways. This framework can: (1) pro-
vide both short- and long-term predictions of connectivity;
(2) incorporate population distribution and abundance into
predictions of connectivity; and (3) quantify demographic
parameters related to connectivity. We begin by introducing
the SAMC framework and illustrating how this framework
can make predictions of movement across complex land-
scapes. We apply and evaluate this framework with a spa-
tially structured population undergoing experimental habitat
destruction to ask: (1) does the inclusion of mortality risk
improve predictions for dispersal across fragmented land-
scapes; and (2) can the SAMC improve predictions relative
to commonly used least-cost and circuit theory approaches?
We end by discussing potential extensions and applications
of the SAMC for connectivity science.

METHODS

The spatial absorbing Markov chain for complex landscapes

We start by considering successful movement across land-
scapes as a stochastic process driven by both movement

behaviour and mortality risk, each of which can be influenced
by spatial heterogeneity in the landscape. In connectivity map-
ping, landscapes are generally considered as discrete
representations of the environment via the use of raster maps;
our framework assumes this discretisation. We also treat time
as a discrete variable, which matches the typical discretisation
of movement data.

Formally, we consider a stochastic process X with a
finite number of states; Xt ¼ i means that the process is in
state i at time t (e.g. an individual is in one of a set of
discrete cells). We assume that transitions are Markovian,
meaning that the probability of visiting state i at time step
tþ 1 depends only on the state at t. For a landscape
divided into C cells (Fig. 2), we define a sparse, C� C
transition matrix, denoted Q (we generally use the term
‘matrix’ to denote the interstitial region among patches.
When referring to the mathematical term, ‘matrix’ will be
preceded by adjectives such as ’transition’). Element i; jð Þ
of Q, qij, is the probability of an individual transitioning
from cell i to j in one time step, which is often formalised
based on ‘cost’ or ‘friction’ maps that reflect matrix resis-
tance to movement. Matrix Q reflects the permeability of
the landscape to movement and is sparse because we
assume that transitions occur locally over short time steps
(e.g. via a 4- or 8-neighbour rule). This matrix can be
obtained using the inverse of mean cost values between
two cells, ci and cj, of a cost map (Fig. 2a; McRae et al.
2008), such that:

qij / 1
ðciþcjÞ=2 : ð1Þ

Such transition matrices lie at the heart of most current
connectivity modelling (e.g. McRae et al. 2008). Absorbing
Markov chains add one or more ‘absorbing’ states to Q,
which in this case represents mortality (Ross 2010).
To explicitly incorporate mortality risk for dispersers, we

define a Cþ 1ð Þ � Cþ 1ð Þ transition probability matrix, P,
that contains both transition probabilities between transient
states (i.e. landscape cells) and an absorbing state representing
death (Fig. 2b). Matrix P can be written as:

Q R

0 1

� �
; ð2Þ

where R is a C� 1 vector containing transition probabilities
from the transient states to the absorbing state, and 0 is a
1� C vector of zeros. Element i; jð Þ of P, pij; is the probability
of transitioning from state i to j in one time step, such that
pi;Cþ1 (i.e. the i-th element of R) is the probability of death in
one time step for an individual located in cell i and
pCþ1;Cþ1 ¼ 1; since a dead individual remains dead. For each
row,

PCþ1
j¼1 pij ¼ 1, because being in any location i at time t,

the total probability at time t + 1 of being in an adjacent cell
– including cell i – or being dead must be 1. The likelihood of
movements across the landscape is captured by the elements
of P, leading to a biased random walk model based on spatial
heterogeneity that can include asymmetric flows across land-
scapes (e.g. Acevedo et al. 2015a), a notable limitation of cir-
cuit theory (McRae et al. 2008). By acknowledging the
potential for fidelity to any cell (e.g. pii [ 0), it can also

Impacts on:
Movement path
Search time
Immigration location

Impacts on:
Dispersal success
Survival of dispersers
Immigration rate

(a) Matrix effects on movement behavior

(b) Matrix effects on movement behavior

Figure 1 How the landscape can impact movement and connectivity. (a)

Matrix resistance (darker grey indicates higher resistance) can alter

movement behaviour and trajectories across landscapes. Matrix resistance

to movement is commonly assumed in connectivity mapping, with least-

cost paths being one of the most common approaches to mapping

corridors and connectivity (Fletcher et al. 2016). Red shows the least-cost

path between two protected areas (in blue). (b) The matrix can also alter

mortality risk, impacting survival and dispersal success (darker gray

indicates higher mortality). The role of the matrix on mortality risk is

currently poorly acknowledged in connectivity predictions and mapping

despite its clear importance for dispersal success across landscapes.

© 2019 John Wiley & Sons Ltd/CNRS

2 R. Fletcher et al. Method



account for variation in movement velocity through land-
scapes (Hanks et al. 2011).
Parameterising P requires a minimum of two maps as input:

one of permeability (e.g. the inverse of resistance or cost) to
movement, and a second of mortality risk (Fig. 2). When fide-
lity is of interest, a map of potential site fidelity could be used
to parameterise the diagonal of Q (Fig. 2); we do not focus
on fidelity here and set diag Qð Þ ¼ 0 to emphasise dispersal

behaviour. To assure that
PCþ1

j¼1

pij ¼ 1, a normalisation constant

may be needed. A natural way to normalise P is to adjust qij
as:

qij ¼ 1�Rið ÞqijPC

j¼1
qij
: ð3Þ

This normalisation ensures that spatial variation in mortal-
ity risk matches input maps on mortality risk and that row

sums equal one (i.e.
PCþ1

j¼1

pij ¼ 1 for all i).

Short-term connectivity

This framework readily generates two broad classes of short-
term predictions of connectivity (Table 1). First, time-specific
predictions are possible, which can be helpful for interpreting
problems of range expansion and spread of species across
complex landscapes (e.g. Hudgins et al. 2017). Second, cumu-
lative predictions across given time periods can be made, such
as asking whether a location might be colonised over the next
10 years.
Predictions for specific time steps can be accomplished using

Chapman–Kolmogorov equations (Ross 2010). For instance,

the probability of being in state j after t steps if starting at
state i is the i; jð Þ-th element of Qt. In this way, temporally
explicit predictions of movement and connectivity can be
made for a time series.
Cumulative predictions over time can include the probabil-

ity of ever visiting location j if an individual starts at location
i, j 6¼ i, within t or fewer steps. Such predictions can be
obtained by transforming location j into an absorbing state,
as follows: (1) remove the j-th row and column of P, which
results in modified transition matrices Qj and Rj; (2) create a
new absorbing state whose incoming probabilities are given
by pij, for each location i 6¼ j, which we store in vector ~qj (i.e.
~qj is the j-th column of Q without pjj); and (3) add a new row
reflecting that location j is now an absorbing state. After these
modifications, the new Cþ 1ð Þ � Cþ 1ð Þ transition matrix is
given by:

Qj Rj ~qj
0 1 0
0 0 1

0
@

1
A: ð4Þ

These modifications allow for counting the transitions that
include visiting location j within the interval 1; t½ �. As a result,
the probability of ever visiting location j, if starting at loca-
tion i 6¼ j, within t or fewer steps is the element corresponding
to location i in the C� 1ð Þ � 1 vector:

~Djt ¼
Pt�1

n¼0

Qn
j

� �
~qj ¼ I�Qj

� ��1
I�Qt

j

� �
~qj; ð5Þ

where I is the identity matrix.
Similarly, the spatiotemporal information provided by Pt

allows for calculating mortality risk over time. The probability

(a)

(b)

Fidelity
Resistance 

to movement Mortality risk

Figure 2 Absorbing Markov chains, the matrix, and connectivity. (a) Across landscapes, raster maps can depict three key aspects for potential movement

and connectivity: fidelity to locations, resistance to movement, and mortality risk. For resistance to movement, network theory is often used to convert

raster maps into sparse networks, where cells (pixels) are linked to neighbours based on ‘resistance’ of the matrix to movement (shown is an 8-neighbour

rule). (b) Absorbing Markov chain theorys takes each of these components to create a transition matrix, P, which explicitly accounts for both movement

(transient transitions among landscape cells, Q, shown in orange) and mortality (absorption, R, shown in green) by adding absorbing column and row

vectors to the Q matrix. Note that in this example, P is a 9 9 9 matrix but only a portion is shown.
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of experiencing mortality at location j within t or fewer steps if
starting in location i is the i; jð Þ-th element of the matrix:

~Bt ¼
Pt�1

n¼0

Qn

� �
~R ¼ I�Qð Þ�1

I�Qtð Þ~R; ð6Þ

where ~R is a C� C matrix with diagonal elements equal to
the mortality probabilities ( ~Rjj ¼ Rj for all j) and off-diagonal
elements equal to 0.
Local population distributions and abundance can be

important parameters for predicting and mapping functional
connectivity, because each provides information on the poten-
tial pool of emigrants. Species distributions can be formally
incorporated when information on presence or abundance of
organisms across the landscape is available at the initiation of
the study (i.e. t ¼ 0). If W is a C� 1 vector whose i-th ele-
ment, wi; describes the probability that an individual is
located at cell i at time t ¼ 0, then the i-th element of vector:

Mt ¼ WTQt; ð7Þ
describes the unconditional probability of finding an indi-
vidual in location i after t steps. In this case T is the trans-
pose operator and Mt is a 1� C vector. If W describes the
population occupancy (i.e. a probability density function) at
time t ¼ 0, then Mit describes the expected probability of
an individual at location i after t steps. Spatial patterns of
population abundance, N, can also be included as
ðNWÞTQt, which describes the expected number of individu-
als in location i after t steps. Similarly, ~W

T

j
~Dt describes the

unconditional probability of ever visiting location j within t
or fewer steps, where ~Wj is vector W without the j-th com-
ponent. The j-th element of vector WT~Bt is the

unconditional probability of experiencing mortality at loca-
tion j within t or fewer steps.

Long-term connectivity and demographic rates

A primary benefit of this framework is that time-specific pre-
dictions can be scaled to provide asymptotic predictions for
long-term connectivity (t ! 1; Table 1). Summing Qt over all
t gives the “fundamental matrix”, F, which can be written as:

F ¼ I�Qð Þ�1: ð8Þ
Matrix F has several important properties and provides a

means for numerous extensions (Kemeny & Snell 1976). First,
element fij of F is the expected number of times an individual
that starts in i uses j before it dies; the sum of row i is the
expected number of time steps that an individual initially at i
spends in the landscape before death. Therefore, F provides a
time-focused description of long-term visitation rates and sur-
vival across complex landscapes.
We extend time-specific predictions of ~D to long-term pre-

dictions of movement and dispersal. The probability that loca-
tion j is visited starting from location i is the i; jð Þ-th element
of matrix:

D ¼ F� Ið Þdiag Fð Þ�1; ð9Þ
where diag Fð Þ is a matrix with diagonal elements from F

and zeros otherwise (Kemeny & Snell 1976). This calculation
excludes the initial visit to the starting location. As a result,
the j; jð Þ-th element of D represents the probability of revisit-
ing location j when starting at j. The unconditional

Table 1 A summary of metrics derived from spatial absorbing Markov chains and their interpretation

Parameter Equation Interpretation/definition

Short-term dynamics

Movement between locations after

t steps

Qt Element i; jð Þ is the probability of being at location j after t steps if starting at location i

Disperser distribution at time t Mt ¼ WTQt Element i is the unconditional probability of finding an individual (or expected number of

individuals) in location i after t steps

Cumulative mortality rate at time t ~Bt ¼
Pt�1

n¼0

Qn

� �
~R Element i; jð Þ is the probability of experiencing mortality at location j within t or fewer

steps if starting in location i:

Cumulative immigration rate at

time t

~Djt ¼
Pt�1

n¼0

~Q
n

� �
~qj Element k is the probability of ever visiting location j, if starting at location i 6¼ j, within t

or fewer steps. Note that ~Q is obtained by deleting the j-th row and column of P, thus i

is the location associated with the k-th row of ~Q

Cumulative disperser distribution

at time t

~W
T

j
~Djt The unconditional probability of ever visiting (or the expected number of individuals that

visited) location j within t or fewer steps; ~Wj is vector W without the j-th component

Cumulative mortality distribution

at time t

WT~Bt The unconditional probability of experiencing mortality at location j within t or fewer

steps

Long-term dynamics

Visitation rate F ¼ I�Qð Þ�1 Element i; jð Þ is the expected number of times an individual that starts in i uses j before it

dies; the sum of row i is the expected number of time steps that an individual initially at

i spends in the landscape before death

Spatially explicit dispersal D ¼ F� Ið Þdiag Fð Þ�1 Element (i, j) is the probability that location j is visited when starting from location i.

Spatially explicit mortality B ¼ F~R Element (i, j) is the probability of suffering mortality in location j if starting in location i.

Life expectancy of dispersers z ¼ I�Qð Þ�11 ¼ F � 1 Element i is the expected amount of time that individuals survive when starting at location i.

Dispersal distribution WTD Element j is the unconditional probability distribution of ever visiting state j, taking into

account the probability of each initial state

Mortality distribution WTB Element j is the unconditional probability of suffering mortality in location j, taking into

account the probability of each initial state

Overall life expectancy WTz Expected time that any individual stays in the landscape before death, taking into account

the probability of each initial state

© 2019 John Wiley & Sons Ltd/CNRS
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probability distribution of ever visiting state j, taking into
account the probability of each initial state, is given by the
j-th element of WTD. D provides a long-term approximation
of the probability of movement between locations, and Dij

can be interpreted as dispersal probability from i to j if we
set j to have a high probability of fidelity or consider it a
different type of absorbing state (i.e. individuals ‘absorb’
because they settle to reproduce). Consistent with the short-
term analysis, lim

t!1
~Djt corresponds to the non-diagonal ele-

ments in the j-th column of D.
The fundamental matrix also provides other demographic

metrics, both at location j and across the entire landscape.
For instance, the probability of suffering mortality in location
j if starting in location i is the i; jð Þ-th element of B, where:

B ¼ F~R: ð10Þ
Such quantification may be useful when interpreting impacts

of potential barriers, such as roads, to connectivity across
landscapes (Galpern et al. 2012; McRae et al. 2012). The i-th
element of WTB represents the unconditional probability of
suffering mortality in location i. Consistent with the short-
term analysis, lim

t!1
~Bt ¼ B.

The life expectancy of individuals starting at different loca-
tions can be derived from the fundamental matrix as a demo-
graphic metric to describe the blended effects of movement
and survival across landscapes (Acevedo et al. 2015b; Sefair
et al. 2017). The life expectancy if starting from location i is
defined as the i-th element of vector:

z ¼ I�Qð Þ�1
1 ¼ F � 1 ð11Þ

where 1 is a C� 1 vector of ones. Species initial distribution
or abundance can also be incorporated (Table 1).

Application: contrasting corridors that differ in movement

resistance and mortality risk

We illustrate some of the properties of this framework using a
simple example of individuals dispersing from a start location
through two possible corridors that connect to a destination
location. In this scenario, one corridor has higher ‘resistance’
than the other, wherein ‘resistance’ may reflect resistance to
movement alone, mortality risk, or both (Fig. 3a). When
focusing on resistance to movement alone, we set mortality
risk as a constant low rate (mortality risk = 0.0002 for all
cells); when focusing on mortality risk, we set resistance to
movement as a constant rate (resistance = 1 for all cells). For
both resistance to movement and resistance based on mortal-
ity risk, we then increase resistance and mortality risk 10-fold.
Morality risk was set at a low value to assure dispersers could
potentially survive moving across the entire landscape. Com-
paring resistance to movement, mortality risk, or both permits
understanding how predictions for connectivity can change
when ‘resistance’ arises from these distinct mechanisms.
With these resistance and mortality maps (Fig. 3a), we cal-

culate D and B (eq. 9, 10) to map movement and mortality,
respectively. We also illustrate how predictions change for D

when we vary the density of dispersing individuals leaving the
two locations (ranging from 0 to 10 dispersers). Finally, we

map time-specific mortality probabilities ~Bt to illustrate how
this framework can be used to interpret short-term dynamics.
When applying the SAMC to time-specific predictions, we
note that the framework assumes only local movement in a
single time step, such that relevant time periods for modelling
may be dependent, in part, on the grain and extent of the
landscape. Given the random walk nature of the model, time
periods considered should be much greater than the number
of cells in the longest dimension of a map. We plot a cumula-
tive mortality risk map for dispersers over time, ~Bt; where t is
scaled to 1–500 9 the number of cells in the longest dimen-
sion of the corridor being considered.

Application: model evaluation under experimental habitat

destruction

We illustrate the SAMC with a model system for which experi-
ments can isolate the role of the matrix on movement and mor-
tality and where we can evaluate predictions of connectivity
with observed movements across landscapes. We conducted
experiments at the Ordway-Swisher Biological Station in north-
central FL, USA. The cactus bug, Chelinidea vittiger (Hemi-
ptera: Coreidae), is a pest insect that depends upon its host,
prickly pear cacti (Opuntia spp.), across its life-cycle. Opuntia
humifusa is patchily distributed in the study area; we defined
patches based on movement behaviours of C. vittiger (Fletcher
et al. 2018). Adults are winged but rarely fly; rather, adult cac-
tus bugs typically walk between cactus patches through a hostile
matrix. The relatively local movements of adults can be mea-
sured using mark-recapture techniques (Fletcher et al. 2011).
We evaluated the utility of the SAMC to predict observed

movements of cactus bugs across 15 50 9 50 m landscapes.
These landscapes were part of a larger experiment on the roles
of habitat loss and fragmentation on population dynamics
(Fletcher et al. 2018). We briefly describe relevant aspects of
this experiment for parameterising the SAMC (see Supporting
Information and Fletcher et al. 2018 for more). In May–June
2014, we first removed all in situ C. vittiger and released 100
individuals (50 males, 50 females) in each landscape. In
February 2015, we randomly applied habitat loss treatments
to cactus patches (12–94% patch loss; Fig. S1) to 12 land-
scapes, leaving three landscapes as controls. We focused on
removing entire patches rather than altering sizes of patches
given that reducing patch size may reduce quality of the
remaining cactus patch. From March 2015 to April 2016, we
surveyed all remaining patches in each landscape every
2 weeks, marking all C. vittiger adults observed with a unique
3-letter code on their protonum. We quantified observed
movements between patches using mark–resight data. During
fall 2015, we measured vegetation height at points on square
grids with 2-m spacing (n = 676 points/landscape) and created
maps of the matrix using ordinary kriging (Fig. 4a).
To parametrise the SAMC, we used information from prior

experiments in both Florida and Colorado suggesting the height
of the matrix vegetation influences cactus bug movements
(Schooley & Wiens 2004; Fletcher et al. 2014; Acevedo &
Fletcher 2017); greater matrix vegetation height linearly increases
resistance to movement (Fig. 4b). Here, we use the inverse of
matrix height to parameterise Q (eq.1, 3) and assumed no fidelity

© 2019 John Wiley & Sons Ltd/CNRS
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in the matrix so as to focus on movement (i.e. diag(QÞ ¼ 0Þ. To
parametrise mortality risk, R, we used a tethering experiment to
quantify daily rates of mortality by placing tethered individuals
across a stratified gradient of matrix vegetation height (n = 46);
we used a complementary log–log survival model to test for the
influence of matrix height on daily mortality probabilities
(Fig. 4b). When linking mortality risk to movement behaviour, R
may need to be rescaled to account for variation in the time scale
for data on resistance to movement and mortality risk because
these two processes are assumed to operate on the same time
scale in the SAMC. To address this issue, we profiled across vari-
ation in absolute mortality risk estimated from the tethering
experiment by altering the intercept of the complementary log–
log model, selecting the value that best fit the movement data
based on model likelihoods (Fig. S2).
We used generalised linear mixed models, with a logit link

function and assuming a binomial error distribution, where
the response variable was the presence/absence of observed
movement between patch i and j, the explanatory variable was
Dij (eqn 9); and landscape was a random effect to account for
non-independence within landscapes. We contrasted D to the
Euclidean distance between patches, least-cost distance based
on least-cost analysis, and commute distance based on circuit
theory (Marrotte & Bowman 2017). For the latter two effec-
tive distances, we calculated two alternative metrics; one used

matrix height as a measure of resistance to movement only
(Fletcher et al. 2014), whereas the second combined informa-
tion on both resistance to movement and results from the
mortality experiment (eqn S1). Finally, we calculated life
expectancy of potential dispersers from cactus patches,WTz.
We relate this metric to variation in estimated population
sizes, taken from Fletcher et al. (2018), to interpret the role of
disperser survival in driving population size across landscapes.
See Supporting Information for more details.

RESULTS

Corridors that differ in movement resistance and mortality risk

The corridor example illustrates that asymptotic predictions
for movement, D (and WTD), across the landscape vary con-
siderably (Fig. 3b). Not only does this framework predict that
movement is expected to decline with distance due to the
demographic costs of mortality, it illustrates how the role of
the landscape on movement resistance versus mortality risk
fundamentally differ: if resistance is driven by movement
alone, individuals are expected to avoid areas of high resis-
tance, but dispersal success remains high. Across these three
scenarios (Fig. 3b), the probability of an individual reaching
the destination location is 0.46 when resistance is based on

Resistance due to:

Mortality

Movement 
and mortality

Corridors with different resistance to movement and mortality

Start

Start

Mapping long-term movement and mortality probability

Movement

(a)

(b)

(c)

Expected 
dispersers

10

55

2

0

8

Variation in population distribution

2.5
5.0
7.5
10.0

0.0001

0.0002
Mortality risk

Resistance to movement

0.25
0.50
0.75

D

0.001

0.002
B

0e+00

4e−04

8e−04
Bt

tim
e

2.5
5.0
7.5

10.0

(d) Mortality over time
~

Figure 3 Spatial absorbing Markov chains illustrate the roles of resistance to movement and mortality on predicted movement and connectivity across two

potential corridors. (a) We consider a simplified scenario of movement from a start location (grey, left) along two potential corridors that connect to a

destination location (grey, right), where either resistance to movement or mortality risk (or both) can impact connectivity. In this situation, we varied

resistance and mortality risk 10 fold across the landscape. (b) Differences in the impacts of mortality risk and resistance to movement are predicted based

on spatial absorbing Markov chains, both in terms of expected visitation probabilities, D, and where mortality is expected to occur, B. (c) Incorporating

population distribution alters predictions of D. Shown are the number of individuals expected to enter each cell for three scenarios in which 10 dispersers

start either on one end of the corridor or on both ends, as indicated by the numbers at the ends. (d) The spatial absorbing Markov chain can also be

applied to interpret short-term (or time-specific) aspects of connectivity. Shown are predictions for mortality probabilities over time, ~Bt. For (c, d), both

resistance to movement and mortality risk shown in (a) are included.
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movement alone, 0.15 when based on mortality alone, and
0.37 when based on both. This framework also identifies key
locations where mortality risk is expected to be high (B;
Fig. 3b). Finally, the framework can account for variation in
initial disperser distribution (Fig. 3c). Time-specific predictions
for mortality ~Bt illustrate that over the short-term, most mor-
tality risk is near the starting patch, but over time there is a
spreading of risk across the landscape, especially in the low-
movement-cost corridor, even though mortality risk there is
lower (Fig. 3d).

Model evaluation under experimental habitat destruction

Overall, we observed 653 movements of C. vittiger across 15
landscapes. Based on the tethering experiment, mortality risk
decreased with increasing vegetation height in the matrix (z-
value = �2.09, b = �0.01 � 0.006 SE; P = 0.036; Fig. 4b),
where resistance to movement is higher. When using model
selection to compare the ability of the SAMC, circuit theory,
least cost distances, and simple Euclidean distances to predict
observed movement across landscapes, support for the D metric
from the SAMC model was overwhelming (AICc model
weight = 1.0; next best model, DAICc = 51.4; Table S1). The
relationship between Dij and observed movements was positive
(z-value = 12.93, b = 0.30 � 0.02 SE; P < 0.0001; Fig. 4c).
There was also a strong correlation between estimated life
expectancy of dispersers, z, and estimated population sizes
across landscapes (r = 0.37, P < 0.0001; Fig. 4d). We used the

SAMC to map WTD and WTB across landscapes (Fig. 5); these
maps identify key areas of connectivity and mortality risk for
dispersers across landscapes and highlight that predicted areas
for high movement and mortality risk need not be the same.

DISCUSSION

Decomposition of movement and mortality for understanding

connectivity

A major advance in our understanding of connectivity has
been made through focusing on landscape resistance for
movement of organisms (Zeller et al. 2012). Nonetheless, resis-
tance can emerge for two fundamentally different reasons: (1)
organisms may be less likely to move through a location (e.g.
Elliot et al. 2014); or (2) organisms may suffer mortality at a
location (e.g. Nowakowski et al. 2015).
Our example highlights the value of isolating these effects.

The SAMC explained observed dispersal of C. vittiger across
landscapes undergoing habitat loss and fragmentation better
than other commonly used frameworks. The primary differ-
ence between the SAMC and these other frameworks in this
application, particularly circuit theory (McRae et al. 2008), is
in how mortality risk is incorporated when predicting dis-
perser success. Applications of circuit theory and least-cost
approaches typically either do not incorporate mortality risk
or consider it as just another aspect of resistance, implicitly
assuming that such risk alters movement routes rather than
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dispersal failure. By directly incorporating mortality, the
SAMC provides information on life expectancy of dispersers,
which was correlated with variation in population sizes across
treatments (Fig. 4d). This result emphasizes the importance of
connectivity for population dynamics in landscapes undergo-
ing habitat loss and fragmentation (Fletcher et al. 2018).
Our framework embraces the complementary role that

movement behaviour and mortality have in their contribution
to connectivity. The role of movement behaviour relative to
mortality risk can be adaptive, wherein organisms avoid areas
of high mortality risk, or maladaptive, wherein organisms pre-
fer moving through areas of high mortality risk, what has
been termed ‘dispersal traps’ (Vasudev et al. 2015), a type of
evolutionary trap (Schlaepfer et al. 2002). Our results suggest
a potential dispersal trap because of the conflicting effect of
the matrix on mortality and movement behaviour, where

relatively open matrix environments are preferred for move-
ment yet individuals suffer a higher risk of mortality there.
Our framework permits asking how the relationship between
movement behaviour and mortality risk can impact disperser
survival and landscape connectivity.

The niche for spatial absorbing Markov chains in connectivity

science

We have provided a general and expandable framework for
connectivity modelling. Among alternative approaches, the
SAMC is most closely related to the use of circuit theory. As
with SAMC, circuit theory can be derived from a discrete-
time Markov chain process. Doyle & Snell (1984), Chandra
et al. (1997), and Klein & Randic (1993) show that current,
voltage, and resistance in electrical circuits have specific inter-
pretations as Markov random walks. Mortality can be poten-
tially be incorporated to some degree via a ground (McRae
et al. 2008) and different amounts of current could be mod-
elled to indirectly reflect variation in population abundance,
though in practice these issues are rarely applied in connectiv-
ity modelling. Yet circuit theory assumes that resistance to
current flow is symmetric between locations and focuses on
long-term indices (McRae et al. 2008), whereas the SAMC
provides both transient and long-term analysis, explicitly
incorporates population distribution, and allows the proba-
bilistic mapping of movement and mortality processes (e.g.
Fig. 5). Circuit theory may be considered a special case of
SAMC, illustrating that SAMC can be viewed as a building
towards a unified framework for connectivity modelling.
Some of the generalisation that SAMC provides can also be

captured with individual-based modelling. For example, indi-
vidual-based modelling approaches often model movement
behaviours in temporally explicit ways and can incorporate
mortality risk per time step (e.g. Rangeshifter; Bocedi et al.
2014), similar to the SAMC. Yet our framework provides
analytical solutions grounded in probability theory that does
not require individual-based simulations, and consequently
may require less knowledge of movement behaviour and could
often be more tractable for implementation.
With the generality comes greater complexity and computa-

tional issues. In its simplest form, the SAMC requires two
maps: a resistance map relevant to movement and a mortality
risk map. Least-cost and circuit theory approaches only
require a single map of ‘resistance’ for modelling. One chal-
lenge is the appropriate estimation of the absorbing Markov
chain matrix, P; the SAMC does not solve challenges of esti-
mating resistance, although it may facilitate linking empirical
data to connectivity modelling (See Supporting Information
for guidance). A second challenge is the fact that the SAMC
is currently more computationally demanding than least-cost
and circuit theory modelling. Different metrics vary in compu-
tational efficiency: we have applied all metrics described here
on landscapes with > 100 000 cells and some metrics (e.g.
WTB) to landscapes with > 2M cells (See Supporting Informa-
tion). We are actively developing an R package samc to
improve computational efficiency and application of the
SAMC (Marx et al. unpublished). With ongoing programming
developments, we expect that SAMC will be capable for
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applications at scales comparable to that of circuit theory
(Leonard et al. 2017).

Extensions and applications

The SAMC could be extended and applied in several fruitful
ways. First, this framework is currently based on biased ran-
dom walks, as in circuit theory, but this assumption could be
relaxed. For instance, correlated random walks could be incor-
porated by adjusting the SAMC to be based on edge–edge con-
nections rather than node-node connections (Prasad & Borges
2006). While feasible, such a formulation would increase com-
putation time due to an increase in the size of P. Alternatively,
directed movement could be incorporated by including a cost
map on directional flow when parameterising Q.
Second, the SAMC provides a means to map mortality risk

and human–wildlife conflict for dispersers across landscapes.
The SAMC framework could be extended to incorporate dif-
ferent mortality sources by including multiple absorbing
states, such as mortality from hunting (Hill et al. 2019). It
may be useful in planning for underpasses and over-passes
that aim to increase the survival of dispersers (Ascensao et al.
2013). By accounting for mortality risk, issues of energetic
reserves on movement success can also be readily incorporated
(Zollner & Lima 2005).
Third, because the SAMC explicitly accounts for variation

in population abundance and distribution, this modelling
framework could be applied to account for individual varia-
tion within and among populations. For instance, the SAMC
could be applied to males and females that may vary in move-
ment behaviour and survival rate (Elliot et al. 2014) or to
account for natal experience on connectivity (Fletcher et al.
2015). In a related way, state-dependent extensions of the
SAMC may allow for accounting for variation in the internal
states of dispersers.
Fourth, the SAMC treats dispersers as independently mov-

ing entities. Yet movement and dispersal can be altered by
conspecifics (Delgado et al. 2014), and dispersers can experi-
ence density dependence as they move (Matthysen 2005).
Extensions of SAMCs that account for such dynamics would
be valuable.
Finally, we expect that this framework could also be applied

to interpret genetic connectivity, a topic of widespread interest
in landscape genetics (Manel et al. 2003). Resistance maps are
often used in understanding genetic connectivity (Spear et al.
2010), which is driven by a combination of movement and suc-
cessful reproduction (Pfluger & Balkenhol 2014; Robertson et al.
2018). In this way, absorption could be interpreted as the poten-
tial for movement to fail to result in successful reproduction.

Conclusions

Connectivity reflects both behavioural and demographic pro-
cesses, which can have drastically different effects on popula-
tions. Although it has long been emphasised that dispersal has
major costs (Hamilton & May 1977), the demographic costs
of dispersal in connectivity modelling has been less appreci-
ated. Our framework provides a means to address this prob-
lem that is well grounded in probability theory. We expect

our framework will provide new insight into connectivity in
demographically variable, spatially complex landscapes.

ACKNOWLEDGEMENTS

This work was supported by the National Science Foundation
(DEB-1343144, DEB-1655555), the USDA, and the University
of Florida Foundation. We thank the Ordway-Swisher Bio-
logical Station for the use of their land and several undergrad-
uate researchers for helping in data collection. We thank K.
Zeller, J. Brodie, P. Leonard, two anonymous reviewers and
the Fletcher Lab for feedback on earlier versions of this
manuscript, which greatly improved and clarified the ideas
presented here.

AUTHORSHIP

RJF and MAA conceived the study; RJF, JAS, CW and AJM
derived connectivity models and related code; RJF, TS and CP
collected data on case study and applied models; RJF and JAS
wrote first draft of the manuscript, and all authors provided sub-
stantial effort in ideas and revision of the manuscript.

DATA AVAILABILITY STATEMENT

The data supporting the results are archived in an appropriate
public repository (Figshare; https://doi.org/10.6084/m9.figsha
re.8248826).

REFERENCES

Acevedo, M.A. & Fletcher, R.J.Jr. (2017). The proximate causes of

asymmetric movement across heterogeneous landscapes. Landsc Ecol.,

32, 1285–1297.
Acevedo, M.A., Fletcher, R.J. Jr., Tremblay, R.L. & Melendez-

Ackerman, E.J. (2015a). Spatial asymmetries in connectivity influence

colonization-extinction dynamics. Oecologia, 179, 415–424.
Acevedo, M.A., Sefair, J.A., Smith, J.C., Reichert, B. & Fletcher, R.J. Jr.

(2015b). Conservation under uncertainty: optimal network protection

strategies for worst-case disturbance events. J. Appl. Ecol., 52, 1588–
1597.

Albert, C.H., Rayfield, B., Dumitru, M. & Gonzalez, A. (2017). Applying

network theory to prioritize multispecies habitat networks that

are robust to climate and land-use change. Conserv. Biol., 31, 1383–
1396.

Ascensao, F., Clevenger, A., Santos-Reis, M., Urbanco, P. & Jackson, N.

(2013). Wildlife-vehicle collision mitigation: Is partial fencing the

answer? An agent-based model approach. Ecol. Model., 257, 36–43.
Beier, P., Spencer, W., Baldwin, R.F. & McRae, B.H. (2011). Toward

best practices for developing regional connectivity maps. Conserv. Biol.,

25, 879–892.
Bocedi, G., Palmer, S.C.F., Pe’er, G., Heikkinen, R.K., Matsinos, Y.G.,

Watts, K., et al. (2014). RangeShifter: a platform for modelling spatial

eco-evolutionary dynamics and species’ responses to environmental

changes. Methods Ecol. Evol., 5, 388–396.
Bonte, D., Van Dyck, H., Bullock, J.M., Coulon, A., Delgado, M.,

Gibbs, M., et al. (2012). Costs of dispersal. Biol. Rev., 87, 290–312.
Chandra, A.K., Raghavan, P., Ruzzo, W.L., Smolensky, R. & Tiwari, P.

(1997). The electrical resistance of a graph captures its commute and

cover times. Comput. Complex., 6, 312–340.
Delgado, M.D., Penteriani, V., Morales, J.M., Gurarie, E. & Ovaskainen,

O. (2014). A statistical framework for inferring the influence of

conspecifics on movement behaviour. Methods Ecol. Evol., 5, 183–189.

© 2019 John Wiley & Sons Ltd/CNRS

Method Connectivity in space and time 9

https://doi.org/10.6084/m9.figshare.8248826
https://doi.org/10.6084/m9.figshare.8248826


Dickson, B.G., Albano, C.M., Anantharaman, R., Beier, P., Fargione, J.,

Graves, T.A., et al. (2019). Circuit-theory applications to connectivity

science and conservation. Conserv. Biol., 33, 239–249. in press.

Doyle, P.G. & Snell, J.L. (1984). Random Walks and Electrical Networks.

Mathematical Association of America, Washington, DC.

Elliot, N.B., Cushman, S.A., Macdonald, D.W. & Loveridge, A.J. (2014).

The devil is in the dispersers: predictions of landscape connectivity

change with demography. J. Appl. Ecol., 51, 1169–1178.
Etherington, T.R. (2016). Least-cost modelling and landscape ecology:

concepts, applications, and opportunities. Current Landscape Ecology

Reports, 1, 40–53.
Fletcher, R.J. Jr, Acevedo, M.A., Reichert, B.E., Pias, K.E. & Kitchens,

W.M. (2011). Social network models predict movement and

connectivity in ecological landscapes. Proc. Natl. Acad. Sci. USA, 108,

19282–19287.
Fletcher, R.J. Jr, Acevedo, M.A. & Robertson, E.P. (2014). The matrix

alters the role of path redundancy on patch colonization rates. Ecology,

95, 1444–1450.
Fletcher, R.J. Jr, Robertson, E.P., Wilcox, R.C., Reichert, B.E., Austin,

J.D. & Kitchens, W.K. (2015). Affinity for natal environments by

dispersers impacts reproduction and explains geographic structure in a

highly mobile bird. Proc. R. Soc. B., 282, 20151545.

Fletcher, R.J. Jr, Burrell, N., Reichert, B.E. & Vasudev, D. (2016).

Divergent perspectives on landscape connectivity reveal consistent

effects from genes to communities. Current Landscape Ecology Reports,

1, 67–79.
Fletcher, R.J. Jr., Reichert, B. & Holmes, K. (2018). The negative effects

of habitat fragmentation operate at the scale of dispersal. Ecology, 99,

2176–2186.
Galpern, P., Manseau, M. & Wilson, P. (2012). Grains of connectivity:

analysis at multiple spatial scales in landscape genetics. Mol. Ecol., 21,

3996–4009.
Hamilton, W.D. & May, R.M. (1977). Dispersal in stable habitats.

Nature, 269, 578–581.
Hanks, E.M., Hooten, M.B., Johnson, D.S. & Sterling, J.T. (2011).

Velocity-based movement modeling for individual and population level

inference. PLoS ONE, 6, e22795.

Hanski, I. (1999). Metapopulation ecology. Oxford University Press.

Harrison, S. & Bruna, E. (1999). Habitat fragmentation and large-

scale conservation: what do we know for sure? Ecography, 22, 225–
232.

Heller, N.E. & Zavaleta, E.S. (2009). Biodiversity management in the face

of climate change: A review of 22 years of recommendations. Biol.

Conserv., 142, 14–32.
Hill, J.E., DeVault, T.L. & Belant, J.L. (2019). Cause-specific mortality of

the world’s terrestrial vertebrates. Glob. Ecol. Biogeogr. 28, 680–689, in
press.

Hudgins, E.J., Liebhold, A.M. & Leung, B. (2017). Predicting the spread

of all invasive forest pests in the United States. Ecol. Lett., 20, 426–
435.

Kemeny, J.G. & Snell, J.L. (1976). Finite Markov Chains. New York, NY:

Springer-Verlag.

Klein, D.J. & Randic, M. (1993). Resistance distance. J. Math. Chem., 12,

81–95.
Leonard, P.B., Duffy, E.B., Baldwin, R.F., McRae, B.H., Shah, V.B. &

Mohapatra, T.K. (2017). gflow: software for modelling circuit theory-

based connectivity at any scale. Methods Ecol. Evol., 8, 519–526.
Manel, S., Schwartz, M.K., Luikart, G. & Taberlet, P. (2003). Landscape

genetics: combining landscape ecology and population genetics. Trends

Ecol. Evol., 18, 189–197.
Marrotte, R.R. & Bowman, J. (2017). The relationship between least-cost

and resistance distance. PLoS ONE, 12, e0174212.

Matthysen, E. (2005). Density-dependent dispersal in birds and mammals.

Ecography, 28, 403–416.
McRae, B.H., Dickson, B.G., Keitt, T.H. & Shah, V.B. (2008). Using

circuit theory to model connectivity in ecology, evolution, and

conservation. Ecology, 89, 2712–2724.

McRae, B.H., Hall, S.A., Beier, P. & Theobald, D.M. (2012). Where to

restore ecological connectivity? Detecting barriers and quantifying

restoration benefits. PLoS ONE, 7, e52604.

Nathan, R., Getz, W.M., Revilla, E., Holyoak, M., Kadmon, R., Saltz,

D., et al. (2008). A movement ecology paradigm for unifying

organismal movement research. Proc. Natl Acad. Sci. USA, 105, 19052–
19059.

Nowakowski, A.J., Veiman-Echeverria, M., Kurz, D.J. & Donnelly, M.A.

(2015). Evaluating connectivity for tropical amphibians using

empirically derived resistance surfaces. Ecol. Appl., 25, 928–942.
Pfluger, F.J. & Balkenhol, N. (2014). A plea for simultaneously

considering matrix quality and local environmental conditions when

analysing landscape impacts on effective dispersal. Mol. Ecol., 23,

2146–2156.
Pinto, N. & Keitt, T.H. (2009). Beyond the least-cost path: evaluating

corridor redundancy using a graph-theoretic approach. Landsc Ecol.,

24, 253–266.
Prasad, B.R.G. & Borges, R.M. (2006). Searching on patch networks

using correlated random walks: Space usage and optimal foraging

predictions using Markov chain models. J. Theor. Biol., 240, 241–
249.

Ricketts, T.H. (2001). The matrix matters: Effective isolation in

fragmented landscapes. Am. Nat., 158, 87–99.
Robertson, E.P., Fletcher, R.J. Jr, Cattau, C.E., Udell, B.J., Reichert,

B.E., Austin, J.D., et al. (2018). Isolating the roles of movement

and reproduction on effective connectivity alters conservation

priorities for an endangered bird. Proc. Natl Acad. Sci. USA, 115,

8591–8596.
Ross, S.M. (2010). Introduction to probability models, 10th edn.. Academic

Press.

Schlaepfer, M.A., Runge, M.C. & Sherman, P.W. (2002). Ecological and

evolutionary traps. Trends Ecol. Evol., 17, 474–480.
Schooley, R.L. & Wiens, J.A. (2004). Movements of cactus bugs: patch

transfers, matrix resistance, and edge permeability. Landsc Ecol., 19,

801–810.
Sefair, J.A., Smith, J.C., Acevedo, M.A. & Fletcher, R.J.( 2017). A

defender-attacker model and algorithm for maximizing weighted

expected hitting time with application to conservation planning. IISE

Transactions, 49, 1112 – 1128.

Slatkin, M. (1993). Isolation by distance in equilibrium and

nonequilibrium populations. Evolution, 47, 264–279.
Spear, S.F., Balkenhol, N., Fortin, M.J., McRae, B.H. & Scribner, K.

(2010). Use of resistance surfaces for landscape genetic studies:

considerations for parameterization and analysis. Mol. Ecol., 19, 3576–
3591.

Taylor, P.D., Fahrig, L., Henein, K. & Merriam, G. (1993). Connectivity

is a vital element of landscape structure. Oikos, 68, 571–573.
Vasudev, D., Fletcher, R.J. Jr., Goswami, V.R. & Krishnadas, M. (2015).

From dispersal constraints to landscape connectivity: lessons from

species distribution modeling. Ecography, 38, 967–978.
Zeller, K.A., McGarigal, K. & Whiteley, A.R. (2012). Estimating

landscape resistance to movement: a review. Landsc Ecol., 27, 777–797.
Zollner, P.A. & Lima, S.L. (2005). Behavioral tradeoffs when dispersing

across a patchy landscape. Oikos, 108, 219–230.

SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Editor, Fangliang He
Manuscript received 1 April 2019
First decision made 17 May 2019
Manuscript accepted 7 June 2019

© 2019 John Wiley & Sons Ltd/CNRS

10 R. Fletcher et al. Method


