
HERBIVORY

Plant size, latitude, and phylogeny explain
within-population variability in herbivory
The Herbivory Variability Network*†

Interactions between plants and herbivores are central in most ecosystems, but their strength
is highly variable. The amount of variability within a system is thought to influence most aspects of
plant-herbivore biology, from ecological stability to plant defense evolution. Our understanding
of what influences variability, however, is limited by sparse data. We collected standardized surveys of
herbivory for 503 plant species at 790 sites across 116° of latitude. With these data, we show that
within-population variability in herbivory increases with latitude, decreases with plant size, and is
phylogenetically structured. Differences in the magnitude of variability are thus central to how
plant-herbivore biology varies across macroscale gradients. We argue that increased focus on
interaction variability will advance understanding of patterns of life on Earth.

P
lant-herbivore interactions, which involve
more than half of macroscopic biodiver-
sity and 90% of macroscopic biomass
(1), are believed to shape macroscale
biological patterns and processes, such

as plant and herbivore biodiversity gradients,
biomass distributions, community structure,
species coexistence, and trait evolution (2–4).
Biologists have studied the role of herbivory
at macroscales by quantifying how the mean
herbivore damage level covaries with latitude,
biome, functional traits, and phylogeny (5–7).
However, macroscale patterns have not always
matched expectations. For example, despite
the paradigm that herbivore pressure increases
toward the equator owing tomore-benign envi-
ronmental conditions, empirical patterns have
been weak or inconsistent (8–10). Similarly,
despite the expectation that closely related
plant species should face similar pressures
from herbivores, phylogenetic signal in mean

herbivore damage is often undetectable or
restricted to certain groups (5, 11). We suggest
that our understanding ofmacroscale patterns
in herbivory can be improved by considering
patterns in the magnitude of variability in
herbivory rather than only mean interaction
strength.
Variability is a hallmark of plant-herbivore

interactions (12). Within populations, patterns
in damage are often highly skewed, with most
plant individuals receiving very low levels of
damage, and a few plants receiving high levels
(13). Although there are limited data on the
drivers and consequences of this variability,
theory indicates that within-species variation
in traits or interactions can be as important
as the mean for biological processes ranging
from population viability to evolutionary dy-
namics (14, 15). For example, spatial variability
can stabilize plant-herbivore dynamics by giving
plants refuges from overexploitation (16), can

increase the importance of competition among
herbivores (17), can maintain diversity by fa-
cilitating the evolutionary coexistence of al-
ternative strategies (18), and can drive disease
dynamics by causing superspreading events
(19). Variation in damage among plant indi-
viduals also indicates the potential pattern of
selection by herbivores, which drives plant
defense evolution (20). Variability has been
hypothesized to favor inducible plant defenses
over constitutively expressed defenses—a cen-
tral dichotomy in defense evolution (21). Des-
pite the central role that variability likely
plays in the ecology and evolution of plants
and herbivores, macroscale patterns of var-
iability remain uncharacterized. In this work,
we propose and test three hypotheses for pat-
terns in the magnitude of variation in herbi-
vore damage among individuals within plant
populations.
First, we hypothesize that herbivory varia-

bilitywithin populations increaseswith distance
from the equator owing to shorter growing
seasons and less-stable abiotic conditions at
higher latitudes reducing the time available
for herbivore foraging. A latitudinal variability
gradient could help explain how herbivores
have influenced global patterns of plant bio-
diversity despite the weak latitudinal gradient
in mean herbivory (22, 23). Herbivory may
maintain plant diversity at low latitudes not
just by being more intense on average but by
being a more-consistently important force
within plant populations. Second, we hypothe-
size that herbivory is more variable among
small plants compared with large plants. Large
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Fig. 1. Mean and variability in plant-herbivore interactions. (A) Histogram of
the number of plant species with different mean proportion leaf area damaged
by herbivores. (B) Histogram of the Gini coefficient values for all plant
species in our dataset. (C) Lorenz curves from all 790 population surveys
in our dataset. Each curve shows the cumulative proportion of herbivory
across the cumulative proportion of plants, ordered by increasing herbivory,

for one plant population. Curves closer to the 1:1 line (gray dashes) indicate
more-even distributions. Lorenz curves form the basis for the calculation
of the Gini coefficient of inequality, which ranges from 0 (a perfectly
even distribution) to 1 (a perfectly uneven distribution). Curves are colored
by their Gini coefficient [as in (B)]. Sample sizes are 790 surveys of
503 plant species.
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plants, which represent a greater sampling
area, should average over small-scale random
variation in herbivory, resulting in values closer
to the population mean, whereas small plants
should be more likely to escape herbivory
entirely or be highly damaged by a few events.
If supported, this hypothesis would expand
our understanding of long-studied differences
in defenses between trees and herbs (24), with

consistent damage on large plants explaining
why trees invest a greater proportion of their
biomass in constitutive defenses (25). Third,
we hypothesize that variability in herbivory is
phylogenetically structured, with more-closely
related plants displaying more-similar levels
of variability. This pattern, which has been
documented for mean herbivory (5), would
indicate that variability is influenced by species-

level traits and is not simply random, as it has
often been treated.
To characterize macroscale patterns in

population-level mean and variability in her-
bivory, 127 research teams in 34 countries used
a standardized protocol (26) to sample plants
and quantify aboveground herbivore damage
for 790 populations of 503 species in 135 fami-
lies. This sample comprised more than 50,000
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Fig. 2. Global patterns of variability in herbivory within plant populations.
(A) The geographic distribution of our sampling sites, colored by variability in
herbivory among individuals within populations (Gini coefficient). Points are
slightly jittered for visibility. (B and C) Variability in herbivory increased (B) and
mean herbivory decreased (C) with latitude across our sampling extent. Lines
show predicted means and 50, 80, and 95% credible intervals from Bayesian

phylogenetic beta regressions. (D) The 11 biomes in our study can be characterized
by their mean and variability in herbivory. Herbivory variability and mean showed
an inverse relationship across biomes [r = −0.67 (−0.94 to −0.08)], but there were
also differences in variability between biomes with similar means. Error bars show
50 and 80% credible regions. Sample size is 790 surveys of 503 species. Legend in
(D) is ordered by Gini coefficient.
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plant individuals distributed across six con-
tinents and 116° of latitude. Past macroscale
studies that have focused on differences in
means typically examined relatively few indi-
viduals per population (5). By contrast, we
sampled 60 individuals per population, which
allowed us to analyze patterns in population-
level variability. For each plant individual, we
recorded plant size (height formost species, or
canopy diameter for prostrate species) and vis-
ually estimated the cumulative proportion of
leaf tissue damaged by invertebrate and verte-
brate herbivores. We quantified the variability
in herbivory among individuals within popu-
lations using the Gini coefficient—a commonly
used scale-invariant metric that ranges from 0
to 1 (perfectly even to perfectly uneven) (27).We
tested our hypotheses by quantifying associa-
tions between each macroscale factor and
the Gini coefficient or mean herbivory using
Bayesian phylogenetic beta regressions.
Overall, within-population variation in her-

bivore damage was very high [mean Gini
coefficient = 0.61 (95% confidence interval: 0.40
to 0.78)] (Fig. 1). On average, the most-damaged
individual in each plant population lost 34.2%
(32.4 to 36.0%) of its leaf area to herbivory,
whereas 27.9% (25.9 to 29.9%) of individuals
completely or essentially escaped herbivory
(<0.5% damage). Half of the damage in each
population was concentrated on 11.3% (10.7 to
11.9%) of its individuals on average. The level
of variation within populations also varied sig-
nificantly across populations and species, with
theGini coefficient ranging from0.03, an almost
perfectly even distribution of damage, to 1.0,
a perfectly uneven distributionwith all damage
on one plant (Fig. 1, B and C). Even though the
Gini coefficient normalizes by the mean, it
can nevertheless be correlated with it. Mean
herbivory and the Gini coefficient were nega-
tively correlated, with Gini coefficients being
low for the 3.9% of populations with very high
(>25%) mean herbivory, whereas populations
with lower mean herbivory exhibited the full
range of Gini coefficients (r = −0.46) (fig. S1).

Geographic patterns of variability

We found strong support for the latitudinal
variability gradient hypothesis (Fig. 2, A and B).
Variationwas lowest at the equator [Gini = 0.51
(0.33 to 0.69)] and increased toward 70°N and
70°S (70°N/S) [Gini = 0.70 (0.54 to 0.84);
Bayesian coefficient of determination (R2) =
5%; posterior probability (pp) = 1.0; Bayes factor
(BF) = 2.0 × 104]. Mean herbivory, by contrast,
declined with latitude, from 8.0% (4.1 to 12.3%)
at the equator to 2.9% (1.4 to 4.7%) at 70°N/S;
this relationship was less predictable than the
one for the Gini coefficient (R2 = 2%; pp = 1.0;
BF = 2.9 × 104) (Fig. 2C, figs. S2 and S3, and
tables S1 to S3). Thus, plants at higher latitudes,
with shorter growing seasons and lower tem-
peratures (26), receive less herbivory on average,

and that herbivory is concentrated on fewer
individuals. This result could conceivably be an
artifact of the negative mean–Gini coefficient
correlation. We therefore repeated our analysis
with mean herbivory included as a covariate.
The estimated latitudinal variability gradient
was still strongly positive, though it was lower
in magnitude, with a 20% (6 to 38%) increase
in the Gini coefficient from the equator to 70°
N/S (R2 = 23%; pp = 1.0; BF = 14.5) (fig. S4).
This relationship captured differences among
biomes: Higher latitude and higher elevation
biomes had higher Gini coefficients and lower
mean herbivory (Fig. 2D and fig. S5). Whereas
there was a negative correlation between the
mean and Gini coefficient among biomes [r =
−0.68 (−0.95 to −0.10)], there were also large
differences in the Gini coefficient between
biomes with similarmean herbivory. This sug-
gests that interaction variability could be a fun-
damental characteristic differentiating biological
systems across macroscales.
Debate over the contribution of herbivory to

global patterns of plant evolution has been
contentious (3, 6, 8, 10, 22, 23). Our data show
strong evidence of ameaningful, althoughnoisy,
latitudinal decline in mean levels of herbivore
damage. They also show that herbivory becomes
more variable with increasing latitude. This
pattern is consistent with our hypothesis that
herbivory influences plant evolution at low
latitudes not just by being more intense on
average, but also by being more consistently
important within a plant population. Theory
predicts that the relationship between the
strength of antagonistic interactions and the
intensity of selection is concave down (saturat-
ing) at low mean interaction strengths (28),
which means that variability at high latitudes,
where mean herbivory is low, should erode
selection through nonlinear averaging (14), all
else being equal. Our finding is also consistent
with the hypothesis that inducible defenses
are more common among temperate com-
pared with tropical plants (29, 30) because
greater variation in herbivory is predicted to
select for inducibility (21). In addition to sea-
sonality and climate, other mechanisms for
the latitudinal variability gradient could in-
clude greater predation pressure on herbivores
at low latitudes (3) suppressing localized out-
breaks and high tropical herbivore diversity
and specialization (31) evening out damage
patterns across plant individuals. More gen-
erally, our results confirm the long-held view
that biotic interactions are more consistent
in the tropics, perhaps owing to longer grow-
ing seasons or greater species diversity and
specialization (3).

Variability and plant size

We also found strong support for the size-
mediated variability hypothesis. Populations
of larger individuals exhibit less variability in

herbivory among individuals. A 2-m increase
in mean plant size (from 0.05 to 2.05 m, en-
compassing ~90%of our populations) resulted
in a 32.7% (20.6 to 44.7%) decrease in the Gini
coefficient [from 0.70 (0.54 to 0.85) to 0.47
(0.29 to 0.66);R2 = 13.3%;pp= 1.0; BF=4.6× 107]
(Fig. 3A and fig. S6). This relationship held
even after accounting for the decline in plant
size with increasing latitude and differences
in plant abundance (which ranged from 2 to
100% cover in our dataset) (tables S4 and S5)
(32). Woody species, which averaged 4.1 times
as large as herbs in our dataset, had 10.9% (2.9
to 19.1%) lower Gini coefficients compared
with herbaceous species [0.56 (0.37 to 0.76)
versus 0.63 (0.44 to 0.81); BF = 4.25]. How-
ever, the overall variance explained by growth
form, including climber and graminoid catego-
ries, was low (R2 = 2.8%) (Fig. 3B and fig. S7),
which suggests that mean size is a more-
important determinant of herbivory patterns
than growth form. Mean herbivory, by contrast,

Fig. 3. Plant size shapes variability in herbivory.
(A) Variability in herbivory among individuals
within populations declines with the average size
(height or canopy diameter for prostrate species)
of plants in the population (R2 = 13.3%; pp = 1.0;
BF = 4.6 × 107; 735 surveys of 472 species).
(B) Variability in herbivory, however, is only
weakly related to plant growth form (R2 = 2.8%),
with woody plants having 10.9% (2.9 to 19.1%)
lower Gini coefficients compared with herbaceous
species (790 surveys of 503 species). Lines,
shaded regions, and large points show predicted
means and 50, 80, and 95% credible intervals
from phylogenetic Bayesian beta regressions.
Each small gray point is one survey.
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was unrelated to mean size or growth form
(figs. S8 and S9).
We posit that lower among-individual vari-

ability in herbivory on large plants results from
the law of large numbers, which says that

processes that involve more random events
produce values closer to the overall mean. In
other words, large plants, which have a greater
number of potential herbivory events, average
over within-plant variability and receive values

closer to the populationmean on average. Small
plants, by contrast, are more likely to escape
herbivory entirely or be severely damaged by
a few events, which results in high variability.
A key implication of this phenomenon is that
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Fig. 4. Phylogenetic patterns of mean and variability in herbivory. Variability in herbivory among plants within populations (Gini coefficient) show greater
phylogenetic signal [Pagel’s l = 0.51 (0.45 to 0.52); P < 0.001] compared with mean herbivory levels [Pagel’s l = 0.07 (0.06 to 0.08); P > 0.1]. For clarity, this
tree includes only the 240 species from the 11 best-represented plant families (≥8 species per family). Our analyses included all 503 species in the dataset
(see fig. S10 for the full tree).
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larger species (and larger stages within species)
should experience greater selection for high
concentrations of constitutive defenses or
tolerance. Smaller species (and stages), by con-
trast, should experience greater selection for
inducible defenses and low concentrations
of metabolically cheap toxins to save resources
in the absence of herbivory and repel herbivores
when encountered. This dichotomy in defense
evolution has been the focus of decades of
research on differences in defenses between
trees and herbs (24) and across ontogenetic
stages (33). Whereas previous work has in-
voked complex biological explanations for
these differences—such as how apparent plants
are to herbivores (24)—our results suggest
that patterns are more parsimoniously ex-
plained by the statistical consequences ofmean
plant size.

Phylogenetic patterns of variability

Finally,we tested the hypothesis that variability
in herbivory is phylogenetically structured. The
Gini coefficient exhibited significant phyloge-
netic signal [Pagel’s l = 0.51 (0.45 to 0.52);
P < 0.001], indicating that more-closely re-
lated species display more-similar variability
levels (Fig. 4 and fig. S10). Mean herbivory, by
contrast, did not show meaningful phyloge-
netic signal [l = 0.07 (0.06 to 0.08); P = 1.0].
These results were robust to tree topology and
species sampling (supplementary materials).
Our findings suggest that the mean damage
level across species changes relatively rapidly
in response to evolutionarily labile plant traits,
whereas the variability is more strongly de-
termined by traits that are phylogenetically
conserved. Traits thought to influence the
amount of herbivore damage, such as chemi-
cal defenses, diverge as plants escape their
herbivores by evolving novel defenses (2, 34),
whereas characteristics such as geographic lo-
cation and plant size, which we find relate to
variability, tend to be less labile. High varia-
bility in some families (e.g., Apocynaceae and
Plantaginaceae) invites further investigation
and could help reveal drivers of these conserved
patterns. To examine macroevolutionary pat-
terns, we fit Brownian motion and Ornstein-
Uhlenbeck models to test for differences in
rates of evolution and the strength of stabiliz-
ing selection. The best-fitting models included
optima for variability and mean herbivory in
tropical versus temperate systems and woody
versus herbaceous growth forms (tables S6
and S7), which indicates that the evolution
of variability in herbivory seems to be driven
by conserved plant traits and is therefore a
biologically informative feature rather than
random noise.

Conclusions
The assumption that plant-herbivore interac-
tions are highly variable has long dominated
ecology and evolution,with foundationalworks
on so-called variable plants and herbivores
(12) and theory exploring the consequences
of variable herbivory (21). Our data confirm
this assumption but also reveal a pattern that
had not been previously documented: strong
differentiation across systems in the level of
variability itself. Variation in herbivory co-
varied with factors central to the ecology and
evolution of plant-herbivore interactions, such
as latitude, biome, plant size, and phylogeny.
Thesemacroscale patternswere often stronger
than patterns for mean herbivory levels. This
suggests that the level of variability could be
important for driving differences in plant-
herbivore biology around the planet, between
species with different traits and across phylo-
geny. Although the importance of varia-
bility in interactions has been recognized by
a few fields, such as epidemiology (19), the
central role of interaction variability in shap-
ing macroscale patterns of life on Earth has
been underappreciated. Our global dataset
is evidence for the ubiquity and predictabil-
ity of variability in one biotic interaction and
highlights the promise of further explorations
of the causes and consequences of interaction
variability.
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Editor’s summary
Herbivory is a major selection pressure on plants, which have evolved many different physical and chemical
adaptations to prevent animals from eating their tissues. However, herbivory pressure can be highly variable, even
between plants in the same population. The Herbivory Variability Network consortium used standardized surveys to
compare herbivory variability within populations at 790 sites across five continents. They found that the weak increase
in mean herbivory at lower latitudes was accompanied by lower variation between individuals. Smaller plant species
had higher herbivory variability, which also showed a phylogenetic signal. These findings highlight how variation in
species interactions can influence eco-evolutionary outcomes. —Bianca Lopez
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